Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.995
Filtrar
1.
J Biomed Sci ; 31(1): 36, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622637

RESUMO

BACKGROUND: This study addresses the urgent need for infection control agents driven by the rise of drug-resistant pathogens such as Acinetobacter baumannii. Our primary aim was to develop and assess a novel endolysin, Tha-PA90, designed to combat these challenges. METHODS: Tha-PA90 incorporates an antimicrobial peptide (AMP) called thanatin at its N-terminus, enhancing bacterial outer membrane permeability and reducing host immune responses. PA90 was selected as the endolysin component. The antibacterial activity of the purified Tha-PA90 was evaluated using an in vitro colony-forming unit (CFU) reduction assay and a membrane permeability test. A549 cells were utilized to measure the penetration into the cytosol and the cytotoxicity of Tha-PA90. Finally, infection control was monitored in A. baumannii infected mice following the intraperitoneal administration of Tha-PA90. RESULTS: Tha-PA90 demonstrated remarkable in vitro efficacy, completely eradicating A. baumannii strains, even drug-resistant variants, at a low concentration of 0.5 µM. Notably, it outperformed thanatin, achieving only a < 3-log reduction at 4 µM. Tha-PA90 exhibited 2-3 times higher membrane permeability than a PA90 and thanatin mixture or PA90 alone. Tha-PA90 was found within A549 cells' cytosol with no discernible cytotoxic effects. Furthermore, Tha-PA90 administration extended the lifespan of A. baumannii-infected mice, reducing bacterial loads in major organs by up to 3 logs. Additionally, it decreased proinflammatory cytokine levels (TNF-α and IL-6), reducing the risk of sepsis from rapid bacterial lysis. Our findings indicate that Tha-PA90 is a promising solution for combating drug-resistant A. baumannii. Its enhanced efficacy, low cytotoxicity, and reduction of proinflammatory responses render it a potential candidate for infection control. CONCLUSIONS: This study underscores the significance of engineered endolysins in addressing the pressing challenge of drug-resistant pathogens and offers insights into improved infection management strategies.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Endopeptidases , Animais , Camundongos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
World J Microbiol Biotechnol ; 40(6): 167, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630176

RESUMO

Carbapenem-resistant Acinetobacter baumannii poses a significant threat to public health globally, especially due to its ability to produce multiple carbapenemases, leading to treatment challenges. This study aimed to investigate the antibiotic resistance pattern of carbapenem-resistant A. baumannii isolates collected from different clinical settings in North East India, focusing on their genotypic and phenotypic resistance profiles. A total of 172 multidrug-resistant A. baumannii isolates were collected and subjected to antibiotic susceptibility test using the Kirby-Bauer disk diffusion method. Various phenotypic tests were performed to detect extended-spectrum ß-lactamase (ESBL), metallo-ß-lactamase (MBL), class C AmpC ß-lactamase (AmpC), and carbapenem hydrolyzing class D ß-lactamase (CHDL) production among the isolates. Overexpression of carbapenemase and cephalosporinase genes was detected among the isolates through both phenotypic and genotypic investigation. The antibiotic resistance profile of the isolates revealed that all were multidrug-resistant; 25% were extensively drug-resistant, 9.30% were pan-drug-resistant, whereas 91.27% were resistant to carbapenems. In the genotypic investigation, 80.81% of isolates were reported harbouring at least one metallo-ß-lactamase encoding gene, with blaNDM being the most prevalent at 70.34%, followed by blaIMP at 51.16% of isolates. Regarding class D carbapenemases, blaOXA-51 and blaOXA-23 genes were detected in all the tested isolates, while blaOXA-24, blaOXA-48, and blaOXA-58 were found in 15.11%, 6.97%, and 1.74% isolates respectively. Further analysis showed that 31.97% of isolates co-harboured ESBL, MBL, AmpC, and CHDL genes, while 31.39% of isolates co-harboured ESBL, MBL, and CHDL genes with or without ISAba1 leading to extensively drug-resistant or pan drug-resistant phenotypes. This study highlights the complex genetic profile and antimicrobial-resistant pattern of the isolates circulating in North East India, emphasizing the urgent need for effective infection control measures and the development of alternative treatment strategies to combat these challenging pathogens.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , beta-Lactamases/genética , Genótipo , Carbapenêmicos/farmacologia , Índia
3.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612672

RESUMO

Acinetobacter baumannii is a major cause of nosocomial infections, and its highly adaptive nature and broad range of antibiotic resistance enable it to persist in hospital environments. A. baumannii often employs two-component systems (TCSs) to regulate adaptive responses and virulence-related traits. This study describes a previously uncharacterized TCS in the A. baumannii ATCC19606 strain, consisting of a transcriptional sensor, DJ41_1407, and its regulator, DJ41_1408, located adjacent to GacA of the GacSA TCS. Markerless mutagenesis was performed to construct DJ41_1407 and DJ41_1408 single and double mutants. DJ41_1408 was found to upregulate 49 genes and downregulate 43 genes, most of which were associated with carbon metabolism and other metabolic pathways, such as benzoate degradation. MEME analysis revealed a putative binding box for DJ41_1408, 5'TGTAAATRATTAYCAWTWAT3'. Colony size, motility, biofilm-forming ability, virulence, and antibiotic resistance of DJ41_1407 and DJ41_1408 single and double mutant strains were assessed against wild type. DJ41_1407 was found to enhance motility, while DJ41_1408 was found to upregulate biofilm-forming ability, and may also modulate antibiotic response. Both DJ41_1407 and DJ41_1408 suppressed virulence, based on results from a G. mellonella infection assay. These results showcase a novel A. baumannii TCS involved in metabolism, with effects on motility, biofilm-forming ability, virulence, and antibiotic response.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Virulência/genética , Antibacterianos/farmacologia , Biofilmes , Bioensaio
4.
Euro Surveill ; 29(15)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606569

RESUMO

BackgroundAs increasing antibiotic resistance in Acinetobacter baumannii poses a global healthcare challenge, understanding its evolution is crucial for effective control strategies.AimWe aimed to evaluate the epidemiology, antimicrobial susceptibility and main resistance mechanisms of Acinetobacter spp. in Spain in 2020, and to explore temporal trends of A. baumannii.MethodsWe collected 199 single-patient Acinetobacter spp. clinical isolates in 2020 from 18 Spanish tertiary hospitals. Minimum inhibitory concentrations (MICs) for nine antimicrobials were determined. Short-read sequencing was performed for all isolates, and targeted long-read sequencing for A. baumannii. Resistance mechanisms, phylogenetics and clonality were assessed. Findings on resistance rates and infection types were compared with data from 2000 and 2010.ResultsCefiderocol and colistin exhibited the highest activity against A. baumannii, although colistin susceptibility has significantly declined over 2 decades. A. non-baumannii strains were highly susceptible to most tested antibiotics. Of the A. baumannii isolates, 47.5% (56/118) were multidrug-resistant (MDR). Phylogeny and clonal relationship analysis of A. baumannii revealed five prevalent international clones, notably IC2 (ST2, n = 52; ST745, n = 4) and IC1 (ST1, n = 14), and some episodes of clonal dissemination. Genes bla OXA-23, bla OXA-58 and bla OXA-24/40 were identified in 49 (41.5%), eight (6.8%) and one (0.8%) A. baumannii isolates, respectively. ISAba1 was found upstream of the gene (a bla OXA-51-like) in 10 isolates.ConclusionsThe emergence of OXA-23-producing ST1 and ST2, the predominant MDR lineages, shows a pivotal shift in carbapenem-resistant A. baumannii (CRAB) epidemiology in Spain. Coupled with increased colistin resistance, these changes underscore notable alterations in regional antimicrobial resistance dynamics.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacologia , beta-Lactamases/genética , Proteína 1 Semelhante a Receptor de Interleucina-1 , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Antibacterianos/farmacologia , Acinetobacter baumannii/genética , Genômica , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética
5.
Anal Chim Acta ; 1303: 342491, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609258

RESUMO

Acinetobacter baumannii (A. baumannii) is a pathogenic bacterium that causes severe infections and its rapid and reliable diagnosis is essential for effective control and treatment. In this study, we present an electrochemical aptasensor based on a signal amplification strategy for the detection of A. baumannii, the high specificity and affinity of the aptamer for the target make it favorable for signal amplification. This allows for a highly sensitive and selective detection of the target. The aptasensor is based on a carbon screen-printed electrode (CSPE) that has been modified with a nanocomposite consisting of multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), chitosan (CS), and a synthesized carbon quantum dot (CQD) from CS. Additionally, the self-assembled aptamers were immobilized on hemin-graphite oxide (H-GO) as a signal probe. The composition of the nanocomposite (rGO-MWCNT/CS/CQD) provides high conductivity and stability, facilitating the efficient capture of A. baumannii onto the surface of the aptasensor. Also, aptamer immobilized on Hemin-graphite oxide (H-GO/Aptamer) was utilized as an electrochemical signal reporter probe by H reduction. This approach improved the detection sensitivity and the aptamer surface density for detecting A. baumannii. Furthermore, under optimized experimental conditions, the aptasensor was demonstrated to be capable of detecting A. baumannii with a linear range of (10 - 1 × 107 Colony-forming unit (CFU)/mL) and a limit of detection (LOD) of 1 CFU/mL (σ = 3). One of the key features of this aptasensor is its ability to distinguish between live and dead bacteria cells, which is very important and critical for clinical applications. In addition, we have successfully detected A. baumannii bacteria in healthy human serum and skim milk powder samples provided using the prepared electrochemical aptasensor. The functional groups present in the synthetic CQD, rGO-MWCNT, and chitosan facilitate biomolecule immobilization and enhance stability and activity. The fast electron-transfer kinetics and high conductivity of these materials contribute to improved sensitivity and selectivity. Furthermore, The H-GO/Aptamer composite's large surface area increases the number of immobilized secondary aptamers and enables a more stable structure. This large surface area also facilitates more H loading, leading to signal amplification.


Assuntos
Acinetobacter baumannii , Quitosana , Grafite , Nanotubos de Carbono , Pontos Quânticos , Humanos , Hemina , Bactérias , Eletrodos
6.
BMC Microbiol ; 24(1): 106, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561652

RESUMO

BACKGROUND: Acinetobacter baumannii (A. baumannii) is associated with both hospital-acquired infections (HAP) and community-acquired pneumonia (CAP). In this study, we present a novel CAP-associated A. baumannii (CAP-AB) strain causing severe pneumonia in an afore healthy male patient without underlying conditions. Subsequently, we investigated the pathogenicity and immunogenicity of this CAP-AB strain using a mice pneumonia model. RESULTS: A 58-year-old male patient with no underlying conditions experienced worsening symptoms of a productive cough, sputum, and fever that developed acutely, in just 24 h. The diagnosis was severe community-acquired pneumonia (CAP) and type-1 respiratory failure. An A. baumannii strain was isolated from his sputum and blood cultures. To gain a deeper understanding of the rapid progression of its pathology, we utilized the CAP-associated A. baumannii strain YC128, a previously obtained hospital-acquired pneumonia A. baumannii (HAP-AB) strain YC156, and a highly virulent A. baumannii control strain LAC-4 to construct a mouse pneumonia model, and subsequently compared the mortality rate of the three groups. Following inoculation with 107 CFU of A. baumannii, the mortality rate for the YC128, LAC-4, and YC156 groups was 60% (6/10), 30% (3/10), and 0%, respectively. The bacterial burden within the pulmonary, liver, and spleen tissues of mice in the YC128 group was significantly higher than that of the YC156 group, and slightly higher than that of the LAC-4 group. Pathological analysis of lung tissue using HE-staining revealed that the inflammatory pathological changes in mice from the YC128 group were significantly more severe than those in the YC156 group. Additionally, CT scan images displayed more pronounced inflammation in the lungs of mice from the YC128 group compared to the YC156 group. Local levels of cytokines/chemokines such as IL-1ß, IL-6, TNF-α, and CXCL1 were assessed via RT-qPCR in lung tissues. In comparison with the YC156 strain, the highly virulent YC128 strain induced the expression of proinflammatory cytokines more rapidly and severely. Furthermore, we examined the in vitro anti-phagocytosis ability of YC128 and YC156 strains against mice peritoneal macrophages, revealing that the highly virulent YC128 isolate displayed greater resistance to macrophage uptake in contrast to YC156. Results from Whole Genome Sequencing (WGS) indicated that YC128 harbored a complete type VI secretion system (T6SS) gene cluster, while YC156 lacked the majority of genes within the T6SS gene cluster. The other virulence-related genes exhibited minimal differences between YC128 and YC156. Drawing from previous studies, we postulated that the T6SS is linked to the hypervirulence and robust anti-phagocytic ability of YC128. CONCLUSIONS: This article reports on the isolation of a novel hypervirulent CAP-AB strain, YC128, from a severe CAP patient. The results demonstrate that this CAP-AB strain, YC128, is capable of inducing fatal pneumonia and extrapulmonary dissemination in a mouse pneumonia model. Moreover, this highly virulent CAP-AB strain exhibits significantly stronger anti-phagocytic abilities compared to the HAP-AB YC156 strain. Genome sequencing comparisons reveal that the heightened hypervirulence and enhanced anti-phagocytosis abilities observed in YC128 may be attributed to the presence of the T6SS.


Assuntos
Acinetobacter baumannii , Infecções Comunitárias Adquiridas , Pneumonia Bacteriana , Humanos , Masculino , Animais , Camundongos , Pessoa de Meia-Idade , Pneumonia Bacteriana/microbiologia , Pulmão/microbiologia , Inflamação , Infecções Comunitárias Adquiridas/microbiologia , Citocinas
7.
BMC Complement Med Ther ; 24(1): 164, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641582

RESUMO

BACKGROUND: Infections caused by Acinetobacter baumannii are becoming a rising public health problem due to its high degree of acquired and intrinsic resistance mechanisms. Bacterial lipases penetrate and damage host tissues, resulting in multiple infections. Because there are very few effective inhibitors of bacterial lipases, new alternatives for treating A. baumannii infections are urgently needed. In recent years, Brassica vegetables have received a lot of attention since their phytochemical compounds have been directly linked to diverse antimicrobial actions by inhibiting the growth of various Gram-positive and Gram-negative bacteria, yeast, and fungi. Despite their longstanding antibacterial history, there is currently a lack of scientific evidence to support their role in the management of infections caused by the nosocomial bacterium, A. baumannii. This study aimed to address this gap in knowledge by examining the antibacterial and lipase inhibitory effects of six commonly consumed Brassica greens, Chinese cabbage (CC), curly and Tuscan kale (CK and TK), red and green Pak choi (RP and GP), and Brussels sprouts (BR), against A. baumannii in relation to their chemical profiles. METHODS: The secondary metabolites of the six extracts were identified using LC-QTOF-MS/MS analysis, and they were subsequently correlated with the lipase inhibitory activity using multivariate data analysis and molecular docking. RESULTS: In total, 99 metabolites from various chemical classes were identified in the extracts. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) revealed the chemical similarities and variabilities among the specimens, with glucosinolates and phenolic compounds being the major metabolites. RP and GP showed the highest antibacterial activity against A. baumannii, followed by CK. Additionally, four species showed a significant effect on the bacterial growth curves and demonstrated relevant inhibition of A. baumannii lipolytic activity. CK showed the greatest inhibition (26%), followed by RP (21%), GP (21%), and TK (15%). Orthogonal partial least squares-discriminant analysis (OPLS-DA) pinpointed 9 metabolites positively correlated with the observed bioactivities. Further, the biomarkers displayed good binding affinities towards lipase active sites ranging from -70.61 to -30.91 kcal/mol, compared to orlistat. CONCLUSION: This study emphasizes the significance of Brassica vegetables as a novel natural source of potential inhibitors of lipase from A. baumannii.


Assuntos
Acinetobacter baumannii , Brassica , Brassica/química , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Espectrometria de Massas em Tandem , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Compostos Fitoquímicos/farmacologia , Lipase
8.
BMC Microbiol ; 24(1): 126, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622558

RESUMO

This study aimed to explore the role of the two-component system Bae SR in the mechanism of drug resistance in carbapenem-resistant A. baumannii (CRAB) using molecular docking and real-time polymerase chain reaction (PCR). The two-component system Bae SR of Acinetobacter baumannii was subjected to molecular docking with imipenem, meropenem, and levofloxacin. Antibacterial assays and fluorescence quantitative PCR were used to explore protein-ligand interactions and molecular biological resistance mechanisms related to CRAB. The analysis of the two-component system in A. baumannii revealed that imipenem exhibited the highest docking energy in Bae S at - 5.81 kcal/mol, while the docking energy for meropenem was - 4.92 kcal/mol. For Bae R, imipenem had a maximum docking energy of - 4.28 kcal/mol, compared with - 4.60 kcal/mol for meropenem. The highest binding energies for Bae S-levofloxacin and Bae R-levofloxacin were - 3.60 and - 3.65 kcal/mol, respectively. All imipenem-resistant strains had minimum inhibitory concentration (MIC) values of 16 µg/mL, whereas levofloxacin-resistant strains had MIC values of 8 µg/mL. The time-sterilization curve showed a significant decrease in bacterial colony numbers at 2 h under the action of 8 µg/mL imipenem, indicating antibacterial effects. In contrast, levofloxacin did not exhibit any antibacterial activity. Fluorescence quantitative PCR results revealed significantly increased relative expression levels of bae S and bae R genes in the CRAB group, which were 2 and 1.5 times higher than those in the CSAB group, respectively, with statistically significant differences. Molecular docking in this study found that the combination of Bae SR and carbapenem antibiotics (imipenem, meropenem) exhibited stronger affinity and stability compared with levofloxacin. Moreover, the overexpression of the two-component system genes in carbapenem-resistant A. baumannii enhanced its resistance to carbapenem, providing theoretical and practical insights into carbapenem resistance in respiratory tract infections caused by A. baumannii.


Assuntos
Acinetobacter baumannii , Carbapenêmicos , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Simulação de Acoplamento Molecular , Reação em Cadeia da Polimerase em Tempo Real , Levofloxacino/farmacologia , Antibacterianos/farmacologia , Imipenem/farmacologia , Resistência a Medicamentos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
9.
Front Cell Infect Microbiol ; 14: 1356353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601741

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) is resistant to almost all antibiotics. Eravacycline, a newer treatment option, has the potential to treat CRAB infections, however, the mechanism by which CRAB isolates develop resistance to eravacycline has yet to be clarified. This study sought to investigate the features and mechanisms of eravacycline heteroresistance among CRAB clinical isolates. A total of 287 isolates were collected in China from 2020 to 2022. The minimum inhibitory concentration (MIC) of eravacycline and other clinically available agents against A. baumannii were determined using broth microdilution. The frequency of eravacycline heteroresistance was determined by population analysis profiling (PAP). Mutations and expression levels of resistance genes in heteroresistant isolates were determined by polymerase chain reaction (PCR) and quantitative real-time PCR (qRT-PCR), respectively. Antisense RNA silencing was used to validate the function of eravacycline heteroresistant candidate genes. Twenty-five eravacycline heteroresistant isolates (17.36%) were detected among 144 CRAB isolates with eravacycline MIC values ≤4 mg/L while no eravacycline heteroresistant strains were detected in carbapenem-susceptible A. baumannii (CSAB) isolates. All eravacycline heteroresistant strains contained OXA-23 carbapenemase and the predominant multilocus sequence typing (MLST) was ST208 (72%). Cross-resistance was observed between eravacycline, tigecycline, and levofloxacin in the resistant subpopulations. The addition of efflux pump inhibitors significantly reduced the eravacycline MIC in resistant subpopulations and weakened the formation of eravacycline heteroresistance in CRAB isolates. The expression levels of adeABC and adeRS were significantly higher in resistant subpopulations than in eravacycline heteroresistant parental strains (P < 0.05). An ISAba1 insertion in the adeS gene was identified in 40% (10/25) of the resistant subpopulations. Decreasing the expression of adeABC or adeRS by antisense RNA silencing significantly inhibited eravacycline heteroresistance. In conclusion, this study identified the emergence of eravacycline heteroresistance in CRAB isolates in China, which is associated with high expression of AdeABC and AdeRS.


Assuntos
Acinetobacter baumannii , Tetraciclinas , Tipagem de Sequências Multilocus , Antibacterianos/farmacologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , RNA Antissenso , China/epidemiologia , Testes de Sensibilidade Microbiana
10.
J Wound Care ; 33(4): 278-285, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573906

RESUMO

OBJECTIVE: To explore the efficacy of 0.01% hypochlorous acid (HOCl) in the treatment of hard-to-heal wounds infected by multidrug-resistant Acinetobacter baumannii. METHOD: We report a case of hard-to-heal wounds on a patient's forearms that were infected by Acinetobacter baumannii. The wounds were treated with 0.01% HOCl. We reviewed the relevant literature and discussed the definition, epidemiology and pathogenesis of hard-to-heal wounds infected by Acinetobacter baumannii. We also explored the safety and efficacy of 0.01% HOCl for the treatment of hard-to-heal wounds infected with Acinetobacter baumannii. RESULTS: After 3-4 weeks of treatment with 0.01% HOCl, the pain and pruritus of the wounds was gradually alleviated, the infection was controlled and the granulation tissue was fresh. The ulcers also shrank and the nutritional condition of the patient improved. In the fifth week, the skin of the patient's right thigh was grafted to repair the wounds, which then healed within 18 days. During the three years of follow-up, the patient had no relapse. CONCLUSION: In our case, the 0.01% HOCl seemed to effectively inactivate the bacterial biological biofilm. This helped to promote wound healing, and was non-toxic to the tissues. We consider low-concentration HOCl to be safe and effective for the treatment of hard-to-heal wounds infected with Acinetobacter baumannii.


Assuntos
Acinetobacter baumannii , Humanos , Pele , Bactérias , Tecido de Granulação
11.
Front Cell Infect Microbiol ; 14: 1351993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524182

RESUMO

Acinetobacter baumannii (A. baumannii) is a popular clinical pathogen worldwide. Biofilm-associated antibiotic-resistant A. baumannii infection poses a great threat to human health. Bacteria in biofilms are highly resistant to antibiotics and disinfectants. Furthermore, inhibition or eradication of biofilms in husbandry, the food industry and clinics are almost impossible. Phages can move across the biofilm matrix and promote antibiotic penetration. In the present study, a lytic A. baumannii phage vB_AbaM-SHI, belonging to family Straboviridae, was isolated from sauce chop factory drain outlet in Wuxi, China. The DNA genome consists of 44,180 bp which contain 93 open reading frames, and genes encoding products morphogenesis are located at the end of the genome. The amino acid sequence of vB_AbaM-SHI endolysin is different from those of previously reported A. baumannii phages in NCBI. Phage vB_AbaM-SHI endolysin has two additional ß strands due to the replacement of a lysine (K) (in KU510289.1, NC_041857.1, JX976549.1 and MH853786.1) with an arginine (R) (SHI) at position 21 of A. baumannii phage endolysin. Spot test showed that phage vB_AbaM-SHI is able to lyse some antibiotic-resistant bacteria, such as A. baumannii (SL, SL1, and SG strains) and E. coli BL21 strain. Additionally, phage vB_AbaM-SHI independently killed bacteria and inhibited bacterial biofilm formation, and synergistically exerted strong antibacterial effects with antibiotics. This study provided a new perspective into the potential application value of phage vB_AbaM-SHI as an antimicrobial agent.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Humanos , Bacteriófagos/genética , Escherichia coli , Antibacterianos/farmacologia , Biofilmes
12.
Front Cell Infect Microbiol ; 14: 1298202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524181

RESUMO

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) clinical isolations have rapidly increased in pediatric patients. To investigate a possible health care-associated infections of CRKP in a tertiary pediatric hospital, the circulating clones and carbapenem-resistant pattern between CRKP and carbapenem-resistant Acinetobacter baumannii (CRAB) isolates were compared to classify their epidemiological characteristics. The results will help to identify the epidemic pattern of the CRKP transmission in the hospital. Methods: Ninety-six CRKP and forty-eight CRAB isolates were collected in Kunming Children's Hospital from 2019 through 2022. These isolates were genotyped using repetitive extragenic palindromic-PCR (REP-PCR). Carbapenemase phenotypic and genetic characterization were investigated using a disk diffusion test and singleplex PCR, respectively. In addition, these characteristics of the two pathogens were compared. Results: The rates of CRKP and CRAB ranged from 15.8% to 37.0% at the hospital. Forty-nine and sixteen REP genotypes were identified among the 96 and 48 CRKP and CRAB isolates tested, respectively. The CRKP isolates showed more genetic diversity than the CRAB isolates. Of the 96 CRKP isolates, 69 (72%) produced Class B carbapenemases. However, all 48 CRAB isolates produced Class D carbapenemase or extended-spectrum ß-lactamases (ESBL) combined with the downregulation of membrane pore proteins. Furthermore, the carbapenemase genes bla KPC, bla IMP, and bla NDM were detected in CRKP isolates. However, CRAB isolates were all positive for the bla VIM, bla OXA-23, and bla OXA-51 genes. Conclusions: These CRKP isolates exhibited different biological and genetic characteristics with dynamic changes, suggesting widespread communities. Continuous epidemiological surveillance and multicenter research should be carried out to strengthen the prevention and control of infections.


Assuntos
Acinetobacter baumannii , Enterobacteriáceas Resistentes a Carbapenêmicos , Humanos , Criança , Antibacterianos/farmacologia , Klebsiella pneumoniae , Genótipo , Hospitais Pediátricos , Farmacorresistência Bacteriana , beta-Lactamases/genética , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
13.
Arch Virol ; 169(3): 66, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451338

RESUMO

A lytic Acinetobacter baumannii phage, isolate vB_AbaM_AB3P2, was isolated from a sewage treatment plant in China. A. baumannii phage vB_AbaM_AB3P2 has a dsDNA genome that is 44,824 bp in length with a G + C content of 37.75%. Ninety-six open reading frames were identified, and no genes for antibiotic resistance or virulence factors were found. Genomic and phylogenetic analysis of this phage revealed that it represents a new species in the genus Obolenskvirus. Phage vB_AbaM_AB3P2 has a short latent period (10 min) and high stability at 30-70°C and pH 2-10 and is potentially useful for controlling multi-drug-resistant A. baumannii.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Bacteriófagos/genética , Acinetobacter baumannii/genética , Filogenia , Genômica , Myoviridae/genética
14.
Chembiochem ; 25(8): e202400127, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451872

RESUMO

The development of novel therapeutic approaches is crucial in the fight against multi-drug resistant (MDR) bacteria, particularly gram-negative species. Small molecule adjuvants that enhance the activity of otherwise gram-positive selective antibiotics against gram-negative bacteria have the potential to expand current treatment options. We have previously reported adjuvants based upon a 2-aminoimidazole (2-AI) scaffold that potentiate macrolide antibiotics against several gram-negative pathogens. Herein, we report the discovery and structure-activity relationship (SAR) investigation of an additional class of macrolide adjuvants based upon a 2-aminobenzimidazole (2-ABI) scaffold. The lead compound lowers the minimum inhibitory concentration (MIC) of clarithromycin (CLR) from 512 to 2 µg/mL at 30 µM against Klebsiella pneumoniae 2146, and from 32 to 2 µg/mL at 5 µM, against Acinetobacter baumannii 5075. Preliminary investigation into the mechanism of action suggests that the compounds are binding to lipopolysaccharide (LPS) in K. pneumoniae, and modulating lipooligosaccharide (LOS) biosynthesis, assembly, or transport in A. baumannii.


Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Benzimidazóis/farmacologia , Macrolídeos , Testes de Sensibilidade Microbiana
15.
APMIS ; 132(5): 317-335, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38444124

RESUMO

Acinetobacter baumannii (A. baumannii) is a Gram-negative, nonmotile, and aerobic bacillus emerged as a superbug, due to increasing the possibility of infection and accelerating rates of antimicrobial agents. It is recognized as a nosocomial pathogen due to its ability to form biofilms. These biofilms serve as a defensive barrier, increase antibiotic resistance, and make treatment more difficult. As a result, the current situation necessitates the rapid emergence of novel therapeutic approaches to ensure successful treatment outcomes. This review explores the intricate relationship between biofilm formation and antibiotic resistance in A. baumannii, emphasizing the role of key virulence factors and quorum sensing (QS) mechanisms that will lead to infections and facilitate insight into developing innovative method to control A. baumannii infections. Furthermore, the review article looks into promising approaches for preventing biofilm formation on medically important surfaces and potential therapeutic methods for eliminating preformed biofilms, which can address biofilm-associated A. baumannii infections. Modern advances in emerging therapeutic options such as antimicrobial peptide (AMPs), nanoparticles (NPs), bacteriophage therapy, photodynamic therapy (PDT), and other biofilm inhibitors can assist readers understand the current landscape and future prospects for effectively treating A. baumannii biofilm infections.


Assuntos
Acinetobacter baumannii , Humanos , Biofilmes , Percepção de Quorum , Fatores de Virulência , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
16.
Ulus Travma Acil Cerrahi Derg ; 30(3): 221-225, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506388

RESUMO

A. baumannii, which is said to be associated with nosocomial infections is considered a significant mortality risk if not adequately addressed. A. baumannii infections typically occur in the aftermath of surgery or trauma. Our patient developed complicated A. baumannii meningitis with lateral ventriculitis and a lumbar abscess post surgery after suffering from a fall. The patient was treated with a 21-day regimen of intrathecally administered colistin and polymyxin B. Following this therapeutic period, the patient's condition improved, ultimately leading to successful recovery and subsequent discharge. This case report serves to highlight the ability of intrathecal administration of antibiotics, that normally have limited potential of crossing the blood-brain-barrier, to lead to improved survival outcomes in multi-drug resistant nosocomial meningitis.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Meningites Bacterianas , Humanos , Meningites Bacterianas/tratamento farmacológico , Infecções por Acinetobacter/tratamento farmacológico , Antibacterianos/uso terapêutico , Colistina/uso terapêutico
17.
J Nanobiotechnology ; 22(1): 138, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555444

RESUMO

Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is a formidable pathogen responsible for severe intracranial infections post-craniotomy, exhibiting a mortality rate as high as 71%. Tigecycline (TGC), a broad-spectrum antibiotic, emerged as a potential therapeutic agent for MDR A. baumannii infections. Nonetheless, its clinical application was hindered by a short in vivo half-life and limited permeability through the blood-brain barrier (BBB). In this study, we prepared a novel core-shell nanoparticle encapsulating water-soluble tigecycline using a blend of mPEG-PLGA and PLGA materials. This nanoparticle, modified with a dual-targeting peptide Aß11 and Tween 80 (Aß11/T80@CSs), was specifically designed to enhance the delivery of tigecycline to the brain for treating A. baumannii-induced intracranial infections. Our findings demonstrated that Aß11/T80@CSs nanocarriers successfully traversed the BBB and effectively delivered TGC into the cerebrospinal fluid (CSF), leading to a significant therapeutic response in a model of MDR A. baumannii intracranial infection. This study offers initial evidence and a platform for the application of brain-targeted nanocarrier delivery systems, showcasing their potential in administering water-soluble anti-infection drugs for intracranial infection treatments, and suggesting promising avenues for clinical translation.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Tigeciclina/farmacologia , Tigeciclina/uso terapêutico , Minociclina/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Água
18.
Med J Malaysia ; 79(2): 115-118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553912

RESUMO

INTRODUCTION: Burn injury patients are at high risk of infection as a result of the nature of the burn injury itself, including prolonged hospital stays, antibiotics use, treatment procedures, etc. In this era, nosocomial infections caused by Acinetobacter baumannii (A.ba) have increased significantly. This study was conducted to investigate the micro-organism pattern and the risk factors for burn patients with multi-drug resistant (MDR) Acinetobacter baumannii (A.ba) in the Burn Unit at Dr. Soetomo Hospital. MATERIALS AND METHODS: We conducted a retrospective, observational study among burn patients with A.ba admitted to the Burn Unit at Dr. Soetomo Hospital from January 2020 to December 2021. Potential risk factors for MDR-A.ba were analysed by univariate and multivariate analysis. The patients diagnosed with MDR-A.ba wound infection were included in the case group. The patients diagnosed with non MDR, these are: (1) the patients isolated micro-organisms other than A.ba, (2) sterile isolates, and (3) the patients isolated as A.ba but not MDR, were included in the control group. RESULTS: A total of 120 burn patients were included in this study. During this study, 24% burn patients were found to have Acinetobacter baumannii and 79% (from 24% of Acinetobacter baumannii) had MDR-A.ba. According to univariate analysis, risk factors that significant were: Abbreviated Burn Severity Index (ABSI) (p = 0,002; OR: 6.10; CI: 1,68 - 21,57); hospital Length Of Stay (LOS) (p < 0,000; OR: 6.95; CI: 2,56 - 18,91) and comorbid (p = 0,006; OR: 3,72; CI: 1,44 - 9,58). But, after analysed by multivariate analysis, only ABSI was the significant factor (p = 0,010; OR: 1,70; CI: 1,23 - 2,36). CONCLUSION: Based on univariate analysis, the significant risk factors for MDR-A.ba were: ABSI, hospital length of stay and comorbid. But after adjusted by multivariate analysis, only ABSI was the significant factor.


Assuntos
Acinetobacter baumannii , Infecção Hospitalar , Humanos , Unidades de Queimados , Estudos Retrospectivos , Farmacorresistência Bacteriana Múltipla , Antibacterianos/uso terapêutico , Hospitais , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/tratamento farmacológico , Fatores de Risco
19.
J Infect Public Health ; 17(5): 774-779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518683

RESUMO

BACKGROUND: Acinetobacter baumannii, a common carbapenem-resistant gram-negative bacillus, usually causes nosocomial infections. Colistin has been used for carbapenem-resistant A. baumannii (CRAB) infections; however, only a few studies have evaluated colistin as a treatment option compared to appropriate controls. We investigated the effectiveness of colistin monotherapy in treating CRAB pneumonia compared to those treated without an active drug. METHODS: Adult patients (≥ 18 years) with CRAB isolated from respiratory specimens were screened from September 2017 to August 2022. Only patients with pneumonia treated with colistin monotherapy (colistin group) were included and compared to those without any active antibiotics (no active antibiotics [NAA] group). The primary and secondary outcomes were 30-day all-cause mortality and acute kidney injury within 30 days. The inverse probability of the treatment-weighted Cox proportional hazard model was used to compare mortality between groups. RESULTS: Among the 826 adult patients with CRAB in their respiratory specimens, 45 and 123 patients were included in the colistin and NAA groups, respectively. Most of the CRAB pneumonia (91.1%) cases were hospital-acquired pneumonia. The 30-day all-cause mortality rates in the colistin and NAA groups were 58.3% and 56.1%, respectively, and no difference was observed after adjustments (adjusted hazard ratio, 0.74; 95% CI, 0.47-1.17). The incidence of acute kidney injury was higher in the colistin group (65.3%) compared to the NAA group (39.0%) (P = 0.143). CONCLUSIONS: Colistin monotherapy did not significantly improve treatment outcomes for CRAB pneumonia. The development and evaluation of new antimicrobials for CRAB pneumonia should be advocated in clinical practice.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Injúria Renal Aguda , Pneumonia , Adulto , Humanos , Colistina/uso terapêutico , Estudos de Coortes , Estudos Retrospectivos , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Antibacterianos , Carbapenêmicos/uso terapêutico , Pneumonia/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente
20.
Carbohydr Res ; 538: 109097, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555658

RESUMO

The structure of the K141 type capsular polysaccharide (CPS) produced by Acinetobacter baumannii KZ1106, a clinical isolate recovered from Kazakhstan in 2016, was established by sugar analyses and one- and two-dimensional 1H and 13C NMR spectroscopy. The CPS was shown to consist of branched tetrasaccharide repeating units (K-units) with the following structure: This structure was found to be consistent with the genetic content of the KL141 CPS biosynthesis gene cluster at the chromosomal K locus in the KZ1106 whole genome sequence. Assignment of the encoded enzymes allowed the first sugar of the K unit to be identified, which revealed that the ß-d-GlcpNAc-(1→3)-d-GlcpNAc bond is the linkage between K-units formed by the WzyKL141 polymerase.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Polissacarídeos/análise , Espectroscopia de Ressonância Magnética , Família Multigênica , Açúcares , Polissacarídeos Bacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...